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Abstract This research article based on the dynamic partial reconfiguration process
gives a new orientation to the idea behind the matrix inverse computation method.
The conventional way of computing matrix inverse uses the “Gauss’s Methods” or
any optimized variant of it. This research extends the classical method limited to the
optimal “Gauss’s Derivative Algorithms”. The new algorithm based on the “Reconfig-
uration Concept” has been applied and provides matrix inverse without using “Gauss’s
Analysis”. Instead, the computation idea will be based on the reconfigured “RLP”. A
wide range of n × n matrix computations have been tested for their feasibility and
correctness. In this paper, we assume that such an algorithm exists that can compute
the inverse matrices using the partial reconfiguration concept; we then use this idea
to develop a reconfiguration-based model for matrix factorization and matrix reduc-
tion. Our reconfiguration model neither utilizes any standard algorithm to achieve the
decomposition or the reduction nor any related matrix concept that factorizes matri-
ces. However, it will use the reconfiguration matrix inverse computation to triangulate
matrices. Themodel is described by a “Vector-Matrix Equation” reconfigured from the
recursive dynamic process. Since the assumptions of our model are derived from the
reconfiguration matrix inverse computations, it correctly computes the triangulated
matrices. Another contribution of our work is the reduction of matrices into trivial
identity matrices. Our model produces triangular matrices that avoid computational
failures due to matrix inverse singularity conditions; thus,this matrix factorization
management approach offers a new matrix-based computation standard.
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1 Introduction

Arguably, the most important features of algorithms and process reconfiguration are
part of the process that can reconfigure; these reconfigurable parts are essential not
only in case of hardware programming and construction, but also in reducing the
hardware complexity of the process. The last optimization feature makes the concept
highly desirable in computer engineering. Differently from the most important com-
puter engineering concepts that will derive from natural sciences and mathematics,
the partial reconfiguration idea is from computer technology and is now applied in
computer algorithms [1–4]. System failure due to singularities in all computational
algorithms can affect the system’s performance. For hardware creation this issue is of
great interest because the hardware to be created must be system failure free and must
have a predictable behavior. Reconfiguration means the ability of a system to modify
operations. For FPGA dynamic reconfigurability the FPGA will modify operations
during runtime. Partial reconfiguration will instead modify (change) a portion of an
FPGA [5,6]. This concept although useful in hardware will find its overall power
in hardware near systems like process, computations and algorithms. Because the
hardware has to be flexible and adaptive, most hardware designers will apply partial
reconfiguration in their applications. This will optimize the hardware complexity of
the system (“Area Savings”) which results to power saving. For this research paper
“Reconfigurability” means the system is capable to reconfigure; as a consequence
the system power size and cost will reduce, we refer to [7] for more details. Some
other advantages are operations functions and program parts’ reuse. This corresponds
in the Xilinx terminology to the hardware reuse feature. Under this concept we also
mean obsolescence avoidance and application portability. In this research article hard-
ware reconfiguration will be adapted in computations and algorithms issues. Adapting
this concept to algorithm has been an interesting research topic so far. Some of the
achievements concern the portation of the “Kalman Filter” on an FPGA, the exten-
sion of algorithm functionality are examples that illustrate the use of this concept in
the algorithmic. In addition to previous use of this concept, applications have already
been successful in research. The Kalman Filter Method has been extended to the HEP
Kalman Filter; the use of the concept in space applications and robotics are a few of
them, refer to [8] for more details.

The concept of reconfiguration is widely used in algorithmic and the understand-
ing of this concept has been investigated by many researchers. The use of special
tools to manage and understand reconfigurations are some of the developments in the
field concerning algorithms IP-over-WDM networks study with stochastic traffic has
been carried using dynamic reconfiguration identifiable structures [9–12]. The use of
Hthreads computational architecture enables to bridge the gap between regular pro-
grammers and complex reconfigurable devices. The use of layers of abstraction built
upon standard reconfigurable devices is possible through an operating system capable
of supporting a diverse collection of computational models within a reconfigurable
device, see [13] for more details. Although the use of dynamic reconfiguration and
its application in science and technique is new, this concept is now essential in all
computer techniques fields which in turn may generate thanks to reconfiguration new
knowledge. In this article, we present the reconfiguration-based model for matrix fac-
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Fig. 1 Recursive linear process:
upper left is the input state that
is an integer state. The right side
is identified by four integer
states created by the recursive
linear process computed by the
hardware. This conceptual
device is still restricted to
integer values

p[1] = q[1]

⎡
⎣
p2q1
p2q1 p3q2
p3q1 p4q2 p4q3

⎤
⎦

gateway(in)

ce

clk

gateway(out1)

gateway(out2)

gateway(out4)

gateway(out3)

rldprocess

torization. Our model combines and extends some theoretical results from the field
of mathematical matrix analysis with matrix-based methods collected from several
researchers relating matrix decomposition. The model we present results in reconfig-
uration of algorithms. More precisely the recursive process was reconfigured into a
factorization method. which can be used to compute the factorization. We model the
method in a “matrix-vector” equation which is a pattern that derives from the matrix
inverse computation scheme, see [1]. By analyzing the matrix inverse algorithm, we
obtained the analytical equation for the matrix factorization. To the best our knowl-
edge, ours is the first reconfiguration-based model for constructing such matrix factors
presented in the reconfiguration literature, as well as the first model to be translated in
hardware. We demonstrate the effectiveness of our approach by comparing the results
produced by our models against standard results. Figure 1 presents the recursive linear
process. Table 1 summarizes the main mathematical and physical quantities used in
the derivation of the proposed models and hardware construction of the “RLP” which
are considered throughout this work. Tables 2 and 3 compare results produced by our
model against results of standard factorization algorithms.

2 Related work and some important theoretical existing results

A few researchers have addressed the issue of technology-based partial reconfigu-
ration [3,10,11,13–17]. Other Space-based approaches have been proposed by [8].
Essentially, they will use the reconfiguration features to enhance space applications.
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Table 1 Main computer science (mathematical) and computer technology quantities considered in the
development of this research paper

Symbol Mathematical/computer science
(technology) description

Physical description

q1 Initial state of the process Vector of length n

qN Final state of the process Vector of length n

q j j-th state of the process Vector of length n

VectSpace Vector space of dimension n R
n

α j i States coefficients R

Gateway (in) Initial state entry Integer vector of length n

Gateway (out) Process output Integer vector of length n

ce Clock enable Hardware device

clk Clock time Hardware device

rldprocess (cw) Dynamic recursive process Hardware device

defaultclockdriver Clock driver Hardware device

xlpersistentdff Device for output enable Hardware device

R, A Variable matrices of size n × n Real value matrices (n × n)

Ri j , Ai j Variable matrix entries Real matrices entries (n × n)

[i j] [klp] Integer index values i, j, k, l, p ∈ N

This is an example of a table containing the vocabulary that appears in graphics and equations, mathematical
and computer science (technology) notions. This is an example of a table containing index variables,
symbols, and physical definition of the notions contained in the graphics and equations

Table 2 Comparative table of
some factorization methods and
application in solving equations

These are selected factorization
algorithms. The last four
methods of the table will not
factorize; they are used for
application’s purpose

Decomposition method Computation
elapse time (s)

Equations
solving elapse
time (s)

(R|V )|Factorization 0.008206 0.000061

(LDU)|Factorization 0.005115 0.000587

(LU)|Factorization 0.143629 0.114312

(Cholesky)|Factorization 0.007862 0.159056

Jacobi|Iterative|Method – 0.002752

Gauss|Seidel|Iterative|Method – 0.005418

SOR|Iterative|Method – 0.017114

Iterative|Refinement|Method – 0.015308

Additionally, investigations the improvement of resource utilization have been con-
ducted. The Hthreads techniques proposed by [18] support computational models
within a reconfigurable device. These research activities make the concept of Dynamic
partial reconfiguration very attractive. The discovery of the reconfiguration-based
matrix computations is a significant contribution when it comes to huge matrix com-
putations. Our research on partial reconfiguration addresses the following recently
computational main discoveries:
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Table 3 Comparative table of
some factorization methods and
application in solving equations

These are selected factorization
algorithms. The last four
methods of the table will not
factorize; they are used for
application’s purpose

Decomposition method Decomposition
capacity (%)

Average
complexity

(R|V )|Factorization 100 �(n2)

(LDU)|Factorization 50 �(n2)

(LU)|Factorization 50 �(n2)

(Cholesky)|Factorization 50 �(n2)

Jacobi|Iterative|Method 0 �(n2)

Gauss|Seidel|Iterative|Method 0 �(n2)

SOR|Iterative|Method 0 �(n2)

Iterative|Refinement|Method 0 �(n2)

1. Reconfigurable recursive linear process.
2. Reconfigurable matrix inverse computation.

These reconfiguration-based methods will still have consequences on hardware cre-
ation and algorithms portion on FPGA. Some algorithmic techniques such as the
“Kalman Filter Method” and “Matrix Inverse Computations” generate new function-
ality. The n dimensional Vector-Matrix model that we address in this research article
introduces a product, which computes the matrix to be triangulated. This matrix will
depend on the existing per reconfiguration computed upper matrices (lower matrices).
The last approach proposed for which a hardware creation has been proposed will be
summarized in the following formula:

V (k−1)
n − V (0)

n +
k−1∑

i=1

Rin · V (i)
i = 0 (1)

Anexpansionprovides the entries of the seekingmatrices.Oneof thematrices provided
by the Matlab simulator is Ri j with {i = 3, j = 4} using the Matlab matrix simulator.
Some of the computational conveniences of this approach concerns the matrix singu-
larity test. In this model we will avoid computational perturbations. This avoidance is
a performance indicator that guarantees the system reliability. Another convenience
concerns the hardware creation as a consequence of the above idea. Since the effec-
tive hardware device creation has been the objective of our research investigations.
This main goal still have to be realized. This makes this reconfiguration-based analy-
sis worth nothing, however, that our goal was to achieve a complete computational
environment in preparation to the hardware realization

R34 =
(

−A13 · A14 · (
1 + A2

12

) − A2
12 · A13 · A14 + A23 · A12 · A14(

1 + A2
12

) · ∥∥V 2
3

∥∥

+ A13 · A12 · A24 − A23 · A24(
1 + A2

12

) · ∥∥V 2
3

∥∥ + A34 · (
1 + A2

12

)
(
1 + A2

12

) · ∥∥V 2
3

∥∥

)
(2)
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Equation (2) is a calculation of the entry [3 4] of the matrix R. All existing para-
meters of this equation are known and are singularity free. This advantage is robust
since the calculated expression has no condition needed to be satisfied for the com-
putations. This particular point will be addressed in the coming section. Additionally,
this last feature will make hardware creation very comfortable. Since the objective
of our analysis is to construct hardware we provide in Fig. 1 the conception of such
hardware. Figure 1 illustrates the recursive linear process.

3 Brief overview of the triangulation method

The trivial triangulation can be deduced from the reconfigurable matrix inverse com-
putationmethod. For the trivial triangulation the followingmatrices and vectorswill be
defined. These matrices are expansions of Eq. (1). Any n×n matrix can be considered
to achieve this reduction:

R̃|Ṽ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

R|V (1)
1,1 R|V (2)

1,2 R|V (3)
1,3 · · · R|V (k−1)

1,k−1

0
. . .

. . .
. . .

...

. . .
. . .

0 R|V (k−1)
k−1,k−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

R|Vk =
[

R̃|Ṽk
R|V (k)

n,k

]
(4)

The submatrices and vectors Ṽ ; R̃; Ṽk; R̃k must be available. The following
submatrix products are to be computed:

Ṽ · R̃; Ṽk · R̃n,k; Vn,k · Rn,k

The first and last product will produce identity matrix; the second product will be zero
and performs the trivial reconfiguration triangulation. The non trivial triangulationwill
bemade in n stages. The representation of this stages is summarizedwith the following
sequence in S = SnS(n−1) · · · S(3)S(2)S(1). The process will terminate at stage n. The
following will provide the explicit description of the stages S(p), p = 1, 2, . . . , n:

j = L
n∑

j=i

Ri j VkL k = 1 i = 1

j = L
n∑

j=i

Ri j VkL k = 1 i = 2
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· · · · · · · · ·
j = L
n∑

j=i

Ri j VkL k = 1 i = n − 1

j = L
n∑

j=i

Ri j VkL k = 1 i = n

The sums in the left side of this table reconstruct the first column entries of the matrix
that is to be factorized. The index i will be set to 1, 2, 3, . . . n and the index k is set
to 1. The second table will describe the second column entries of the decomposed
matrix. This table represents S(2). The index l will be set to 2 and the index i will take
the integer values 1, 2, 3, . . . n.

j = L
n∑

j=i+1

Ri j VkL L = 2 i = 1

j = k
n∑

j=i

Ri j VkL l = 2 i = 2

· · · · · · · · · · · · · · · · · ·
j = L
n∑

j=i

Ri j VkL L = 2 i = n − 1

j = L
n∑

j=i

Ri j VkL l = 2 i = n

For the third table we set k = L = n and let i = 1, 2, . . . n:

j = k
n∑

j=n

Ri j VkL L = k = n i = 1

j = k
n∑

j=i

Ri j VkL L = k = n i = 2

· · · · · · · · · · · · · · · · · ·
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j = L
n∑

j=i

Ri j VkL L = k = n i = n − 1

j = L
n∑

j=i

Ri j VkL L = k = n i = n

This analysis takes advantage of the matrix inverse computations. The starting point is
the partial reconfiguration of algorithms. For this research article, we reconfigure the
linear recursive process. There are significant advantages using this method. The most
important advantage is the complexity time that is better than any LU decomposition
algorithm to the best of our knowledge. The Factorization is unique and no permutation
of the constructed matrix is needed. Some computations related to Gauss will not be
necessary except for computational check. This method will be very important in all
matrix-based issues, especially in image processing when it comes to represent images
as matrices. Graph theory will also take advantage with this method in computational
mechanic by solving linear systems of equations. In code theory we can classify
all triangulation (Factorization). Solving linear system of equation will be greatly
improved. This method will be better than all existing iterative methods. Large and
small matrices will be equally handled. All n × n matrices manipulation will be
reasonably computed with the triangulation method presented in this paper. More
precision will be provided in the coming sections with a comparatives speeds table
that analyses the execution time of various decomposition algorithms.

4 Existing models for matrix triangulation and discussion

The computational matrix-based literature describes several models built around two
major algorithms in matrix decomposition:

1. The LU-Decomposition algorithm is an explicit method designed to factorize any
non singular n × n matrix A. This method performs by considering permutations.
Although this method is widely used for solving mechanical problems, it presents
some disadvantages. The principal submatrices of any matrix A must be all non-
singular. This method will be practicable under the assumption that the matrix A
is non singular. The analysis of this method is based on the following elimination
method:

Do for each j such that k + 1 ≤ j ≤ n

row( j) − m jk row(k) −→ row( j)

This method will not work unless the m jk are all well defined. By varying j a
sequence of lower triangular matrices will be formed and its product is the factor
matrix L . The upper triangular factor will be obtained by taking the inverse of the
matrix product.
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2. Cholesky factorization is designed to compute factorization for matrices that are
positive definite. This method will not decompose matrices with entries that are
zero in the main diagonal of the matrix. Due to the following initialisation of the
Cholesky decomposition method,

L(kk) ←− √
(akk) (5)

complex factorization will be allowed instead of real-valued decomposition.
3. The computational analysis of the two provided methods is not new; there are opti-

mized variants of this algorithm in research. All these variant are basically subject
to singularities. To avoid that issue a partial reconfiguration-based model for fac-
torization is developed in the coming sections. There are few recent achievements
on partial reconfiguration of algorithms, all addressing algorithm optimization and
algorithm creations. The [Q, R]-decomposition method can now be achieved with
partial reconfiguration. Some analyses have been made on algorithms that can
reconfigure with applications in real vectors coding and applied robotic. Partial
reconfiguration of algorithms will extend algorithm functionality and will allow a
systematic hardware creation. The previously cited objective of partial reconfigura-
tion is significant in computer sciences and the recent matrix inverse computations
and the factorization-based methods attest this point. For the coming matrix fac-
torization model description we assume the following facts:
(a) All constructedmatrices are considered as linearmappings of dimensionn ≥ 1.

The vectors in this research article are all elements of the vector spaces Rn .
(b) The norm of a column vector A j denoted ‖A j‖ is the root of square scalar of

A j .
(c) Thematrix with all entries equal to zero is the zeromatrix and thematrix which

has all entries that are not diagonal equal to zero and all diagonal entries equal
to 1 is the identity matrix.

(d) The recursive linear process is given and the partial reconfiguration matrix
inverse algorithm as well.

5 Proposed factorization-based model theorem

The switch description given through [Eq. (1)] is based on the dynamic recursive
process of reconfiguration. The factorization in triangular matrix factors is given by
the following lighting theorem that gives a condition under which the LDU Factoriza-
tion Method and the “Reconfiguration Method” factorization result in the same n × n
matrix:

Theorem 1 The LDU method and the Reconfiguration Decomposition factorize the
same matrix n × n matrix H if the condition

∑

k≤ j≤n
1≤i≤n
1≤k≤n

ak j b ji =
∑

1≤ j≤k
1≤i≤n
1≤k≤n

ãk j b̃ j i (6)
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is satisfied where the coefficients ã|ai, j b̃|bi, j are the factorization entries of the
matrix H.

The proof idea of this theorem is based on the fact that, given any n × n matrix
using the “RLP” can reconfigure the product of triangular matrices via Eq. (1). The
extensions of this equation lead to Eq. (3). At stage k = 2, Matrix H can be specified
in the following matrix:

[
a11b11 + a12b21 a12b22
a22b21 a22b22

]
=

[
R11V11 + R12V21 R12V22
R22V21 R22V22

]
.

On the other side, the LDU provides the product of a lower triangular with an upper
triangular matrix. The product is given as follows:

[
ã11 0
ã21 ã22

] [
b̃11 b̃21
b̃21 0

]
=

[
ã11 ã11b̃12
ã21b̃11 ã21b̃12 + ã22b̃22

]
.

This completes the proof idea at state p = 2 of Sect. 1 for generalization of Stage 2.
We suppose that the H provided by the LDU method is made of n column vectors Hl

with l ∈ {1, 2, 3, . . . , n}. H is the product “LDU” and the matrix factors are at first
lower and then upper matrix factors; this leads to setting m = k, meaning that

⎡

⎢⎣

⎡

⎢⎣

∑m=k
j=1 ãk j b̃ j i

Set i = 1

k = 1, 2, 3, . . .

⎤

⎥⎦ · · · · · ·
⎡

⎢⎣

∑m=k
j=1 ãk j b̃ j i

Set i = n

k = 1, 2, 3, . . .

⎤

⎥⎦

⎤

⎥⎦ .

These are all Matrix H column vectors, and they complete the proof. This method of
decomposition is useful for matrices that are near singular and thus provides better
results. Below we provide a table that will compare the decomposition capacity and
the equation solving accuracy.

This method of decomposition will be useful for matrices that are near singular
and will thus provide better results. Bellow we provide a table that will compare the
decomposition capacity and the equation solving accuracy.

Table 3 compares methods that factorize and solve numerical matrix-based prob-
lems under some given conditions. The matrix we consider is of size 50 × 50. The
measurements of the “Elapsed Time”weremade after computing the “Reconfiguration
R|V factorization” and reconstructing in the meantime factorized matrix. The over-
all decomposition capacity is zero means that these algorithms will not decompose
matrices. For (Cholesky|LU|LDU)-factorization, the decomposition depends upon
some singularity conditions. If the matrix will have a huge condition number, this will
poor the factorization. If the matrix is singular the decomposition will be impossible.
These two cases reduce the factorization capability of the cited algorithms to 50%. The
decomposition capability of the proposed model in this research article is 100%. This
means the computation of the factors will not depend on the matrix singularity test.
Instead will depend on the recursive linear process. This process allows n×n matrices
of any kind. Although calculation and equations solving execution times vary, the the-
oretical complexity of factorization algorithms remains n2 in average see [1] for more
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details. We remark that such variations are less intensive if we consider the “Iterative
Refinement Method, SOR Iterative Method, the Gauss Seidel Method and the Jacobi
Iterative Method”. Compared to all other listed methods the R|V -factorization has the
smallest equation solving elapsed time. For these measurements we set the tolerance
on 25% and the number of iteration on 10. We observe that the factorization of any
n×n lower triangular matrix will give two identity matrix factors. A condition so that
the product factors yield the identity is given with the following equation system of
n × n matrix equations:

I =
{
R · V if the “LRP” is applied
R · V t if factorization is identity.

(7)

The reconfiguration inverse matrix computation computes the first equation,
whereas the second equation is the product of the triangulation factors. We observe
that the transposed matrix V t and the matrix V are equal, creating a diagonal matrix.
Since the matrix R is not zero, this observation is valid and dependent on the matrix
input in the “RLP”. If the factors are all identity factors, then the input matrix of the
“LRP” will be lower triangular matrix. One of the features of this model is that what-
ever input matrix we choose, the method will always provide decomposition factors.
The theoretical aspect of the process, fortunately, can make a classification of matri-
ces according to the “LRP” response. Under symmetric conditions, the factorization
process is comfortable. This means that the factor matrix will be recursively defined
according to the sequence scheme defined as

Fn =

⎛

⎜⎜⎜⎜⎝

V1n

Fn−1 V2n

0 Vnn

⎞

⎟⎟⎟⎟⎠
. (8)

The factorization depends on the given matrix. If the corresponding matrix is an upper
triangular matrix the reconfigured factors will be the same as the non triangular input
matrix. The input of the zero matrix in the reconfiguration process does not result in
computation failure. Instead, the process always results in a factorization. Under some
symmetrical conditions, the computation of the factorization is straightforward. The
process being recursive, some matrix factors are recursively calculated. Since this is
not always the case, calculations of this method will be huge. At stage 6, for example,
all calculations will be impracticable. This point can address the numerical analysis
adequately. In Fig. 2, we perform calculations up to stage 4, whereas the computed
matrices P and R are not feasible.

5.1 Improvement of method calculation point of view and validation of model

Matrices computed by Eq. (1) will be practically computed if the stage of the cal-
culations is less than 5. The equation is used for some matrices that are symmetric
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( ) = 1, 2, 3

(1)
1 1 0 0 0 11 0 0 0

(2)
2

− 1√
2

1√
2 0 0 12 22 0 0

(3)
3 0 − 1√

2
1√
2 0 13 23 33 0

( )
4 = 1, 2, 3

(1)
4 −1 0 0 1 14 0 0 0

(2)
4

1
2 −3

2 0 1 24 0 0 0

(3)
4

1
2

3
2 −3 1 14 0 0 0

(4)
4

4
4

√
2

10 3
√
2

10 −6
√
2

10 2
√
2

10 14 24 34 44

11 = 1 12 = 1 13 = 1 14 = 1 23 =
√
2 33 =

√
2 22 =

√
2

24 = 3√
2 34 = 6√

2 44 = 5√
2

A =

⎡
⎢⎢⎣
1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

⎤
⎥⎥⎦ ( −1) − −1

=1
· ( ) = (0)

,
=

⎧⎨
⎩

( ) · =

=

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5931 0.9270 −0.9437 0.2863 0.1117 0.0120 0.0136
−0.3561 1.9173 −2.5828 0.6690 0.4970 −0.2023 0.0579
1.0963 1.9221 −5.3802 1.5949 1.9057 −1.3414 0.2026
0.0601 −0.1680 −0.9334 1.2234 0.5995 −0.8240 0.0425

−0.1209 −1.4454 0.0637 0.8860 3.1735 −2.7526 0.1957
−9.6906 −39.3844 44.4326 7.0746 20.1258 −23.5243 0.9664
−10.4196 −42.4477 47.7560 7.6843 21.8047 −25.3776 1.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0 1.4142 1.4142 2.1213 2.8284 3.5355 4.2426
0 0 1.4142 4.2426 7.0711 10.6066 14.8492
0 0 0 3.5355 −0.5657 0.7071 3.1113
0 0 0 0 6.5361 6.1811 14.3450
0 0 0 0 0 2.7906 70.8197
0 0 0 0 0 0 73.2838

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 2 Factorization calculation and computations: from table one to four we present hand calculation.
Under these tables formulas are given for calculation. At the bottom of the figure we provide a matrix and
one of its computed factors according to Eq. (1)

and recursively defined. If such matrices are restricted to their upper triangular form,
Eq. (8) still applies. Equation (8) cannot be used to calculate the triangulation of all
given symmetric matrices. Considering, for example, the following symmetric matrix
with integer entries:
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⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 · · · · · · n
... 1

...
...

...

n − 1 1
. . .

...

n 1 2 · · · · · · n − 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Such a symmetric matrix is not appropriate for the use of Eq. (8). In general, one
cannot utilize Eq. (8) to factorize matrices per reconfiguration. In our model, however,
this is possible for some simulated matrices.

6 Quantitative results and hardware construction concept

We have made some measurements on real-valued and integer-valued matrices, while
the speed of the small size matrices gives the same cpu value; this remark does not
apply to higher dimensional matrices. In Fig. 3, it appears that the time for the new
factorization is factor 3 better than the usual lu factorization time. This is due to the
reconfigurable algorithm. Our model gives exact triangulations. This is generally due
to the implicit computation of the matrix to be triangulated.

In Sect. 3 we present the “RLP” in hardware with restriction to integer input values.
In this section, we give details of this process in hardware. The process is made of
three blocks:

1. The default-clock-driver block.
2. The xlpersistentdff block.
3. The the rdprocess block.

The expansion of the default-clock-driver block presents the following inputs
(sysce, syscl, sysclr ). These are driven in the xlclockdriver part to output the
(ce, ce-logic, clk, clr ). The ce and the clk are connected to the rldprocess block
together with the input state of the theoretical“LRP”. The xlpersistentdff block is not
expandable and thus ensures that the constructed hardware functions properly. The

Fig. 3 CPU Comparative measurements for n = 3, 12. For n = 3 the CPU times are equal for our model
whereas and for n = 12 the CPU times are different for the LU triangulation model
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rdprocess block expansion presents the rdprocess part connected to the two previous
inputs/outputs. The output of rdprocess is made of four entities (addsub1, addsub2)
and (scale1, scale2). These will be transformed into the output of the system accord-
ing to the following figure that only addresses the “rdprocess” block:

This construction is limited to integer values. Practically,we input the hardwarewith
a state and the hardware creates the four output values as output states that are integers.
For more details about the state outputs refer to appendix. This hardware creation
although capable of generating states of any linear recursive process presents some
limitations. Real-valued inputs are not accepted by this device, which is a particular
point of our investigation. The second point is the construction of the hardware as a
real device. The real device will be capable of using reconfiguration to solve problems
related to the previous analysis. The performed qualitative comparisons in Table 2 and
the results produced by our model will be useful in the following concrete applied
science:

• Mathematical computational reconfiguration (Kalman Filter Method) [19]
• Space application computations using reconfigured matrices (System Failure
Avoidance).

• Mathematical Programming (matrix-based and linear systems solving per recon-
figuration).

• Optimization (Functionality Extension due to Reconfiguration) [19].

This concept, although addressing applied computational applied sciences and engi-
neering fields, has some theoretical advantages. The concept gives a new vision in
of coding theory. Matrix classification and new matrix representations are one of the
advantages stemming from this development. The reconfiguration analysis addressing
operations quantification in algorithms and computations are some concrete fields that
will be of great interest to our research.

6.1 Experimentation

This research was made possible via the following software and programs:

1. Matlab Programming Environment (Mathworks R2010).
2. C/C++ Programming Environment.
3. Matlab Files (Algorithms in Matlab, Power of Pseudocodes [20]).
4. Xilinx Ise Design Suite 12.1.
5. System Generator.
6. FPGA Spartan Board Starter.
7. Latex Software.

We used Matlab R2010 because this version of Matworks is compatible with “System
Generator” as part of the ISE Design Suite from Xilinx. The process was described
first using Simulink, and using “System Generator” we created Figs. 1 and 4. Figure 2
is a table created to report hand calculations. This table was devised using Latex
Software that creates frames for hand-calculated result reports. One should note that
the computed results produced by our model closely approximate the theoretically
expected results as presented in Fig. 2. This illustrates the effectiveness of our model.
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Fig. 4 Block “rdprocess”
expansion.
“Default-Clock-Driver” Block
and “Xlpersistentdff” Blocks
have been omitted since the
process is valid without theses
Blocks, that is, we still obtain
integer results with or without
the Coted Blocks

7 Discussion

We have implemented the proposed model and used it to realize factorization. The
resulting decompositions are very convincing and an elapsed time achieved in Equa-
tion solving is far better than the existing standard (see Table 2). We have compared
our results of factorization with the usual factorization methods. The results produced
by our models are in qualitative agreement with the standard ones. In addition to this
qualitative agreement, the permutation matrices will be avoided, making the factor-
ization more precise. For this model the computation of the decomposition is given
provided any n × n matrix is given. This represents an implicit matrix factorization;
the ill condition problem is thus avoided. Neither the pivoting strategy nor matrix
condition number has been considered in our model analysis. From a computational
point of view, our model is fast and since the computation of the determinant of lower
matrix is always set to 1 for the LU factorization method, our model does not predict
such a lower matrix determinant. Conversely, this inconvenience is minimal as far as
the overall computational complexity of the factorization is concerned. The standard
methods detect ill-conditioned problems or near-singular matrices. This is not the case
in reconfigurable matrix factorization algorithms. In order to demonstrate the potential
use of the proposed models in computer engineering, construction of the linear recur-
sive process has been realized on the foundational reconfiguration factorization. The
construction still has to be extended to render all factorization factors. The constructed
hardware provides integer states. This construction is new and can be extended to solve
for real inputs, real matrix factors. This is one of the goals that we are now tracking,
and the analysis we still carry based on reconfiguring of algorithm will be sufficient
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for the device construction. From the concept standpoint, the use of reconfiguration
influences all matrix-based computations. These aspects are not currently taken into
account by many algorithm designers. The model presented contains reliable data.
Matrices of any size can be handled equally. The fact that there are no conditions for
implementation makes this method original not from a reconfiguration of algorithm
point of view but from computations that may block a running system.Moreover, since
our model covers many matrix-based computations, it can be adapted to many control
theory applications, which opens an interesting avenue for future work. No standard
matrix concept has been used to develop this model. For standard concepts refer to
the following [21,22]. The presentations and computational point of this model could
be extended too. The Gauss analysis together with LU factorization principles have
not been employed to develop this model. Instead, the reconfiguration principles cur-
rently addressed in [19] have been applied. The version of the model as a technique is
derived from the article [1]. Furthermore, no concept of determinants has been used.
Thus, at overall angles, in addition to our new analysis, the resulting hardware con-
struction would perceive the future hardware construction based on reconfiguration
analysis. For the evaluation of ourmodel, we used existing computational methods and
special matrices. Thanks to the reconfiguration conditions, creating some interesting
outcomes, such as the “Bug-free hardware effect”. We use reconfiguration and the
linear recursive process for our model. To the best of our knowledge, no model in the
literature takes these factors into account. This is probably due to the scientific prin-
ciple: concept first, then hardware. Our approach is hardware first, then concept. Our
model is also original in the sense that it uses the concept of reconfiguration (hardware)
to solve a computational problem. As all conditions of our models were derived from
reconfiguration and the linear recursive process, it implicitly provides the factorization
of any matrix. The model can be considered as a pattern since the factorization com-
putations are exactly produced.We have validated our models through comparisons of
our results against standard matrix-related algorithms (see [21,22]). Concerning our
model description, Fig. 2 presents the hand calculation and the computations of our
model. The quality of these presentations and computations qualitatively matched the
actual standard one.To the best of our knowledge, ours is thefirst reconfiguration-based
model for matrix factorization presented in the reconfiguration of system literature. It
is also the first practical model for such factors computation to be realized in hardware.
Our reconfiguration-basedmodel for matrix-based computations is also the first model
of its kind in the reconfiguration literature.

8 Conclusion

We have presented a new model for matrix factor computations. Our reconfiguration-
based model combines and extends the standard existing matrix factorization algo-
rithms presented in most matrix literature. Our results and test are basically from
engineering and mathematical computing. The resulting model is expressed in terms
of a “Matrix-Vector” equation that describes all the matrix factorization coefficients.
This equation is general and computes factorization factors regardless of the input
matrix.
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